Simply Psychology Logo


Myelin Sheath

The Function and Damage of Nerve Insulation

By Olivia Guy-Evans, published June 15, 2021


Myelin sheath is a substance which is found on neurons within the central nervous system (CNS) and the peripheral nervous system (PNS).

Myelin sheath is the protective layer that wraps around the axons of neurons to aid in insulating the neurons, and to increase the number of electrical signals being transferred.

Neuron with myelin sheath

An axon is usually wrapped by the myelin sheath around its whole length in order to increase the speed of these electrical signals, allowing all actions to be conducted quickly.

Myelin sheath consists of lipids and proteins which make up a fatty substance and is white in appearance. This forms the protective sleeve that wraps around the axon of neurons. The sheath is made up of many concentric layers of plasma membrane, wrapped tightly around the axon.

There are breaks of between 0.2 and 2 mm. in the myelin sheath, these are called nodes of Ranvier. Action potentials (nerve impulses) traveling down the axon "jump" from node to node. This speeds up the transmission.

What is a Neuron?

Neurons are cells within the nervous systems which use and transmit electrical signals which carry information around the brain and the rest of the nervous system.

Each neuron has a soma, which is the cell’s nucleus, dendrites, which are branch-like structures at the ends of neurons to send and receive messages, and an axon, which is a long and slender structure, which carries nerve impulses down the neuron. Axons are a key element of a neuron since they conduct electrical signals in the form of action potential.

Myelin was discovered in the mid-19th century when scientists were observing neurons through a microscope, and they noticed a glistening white substance surrounding the axons. Rudolf Virchow, a German pathologist who made this observation, coined the term ‘myelin’ from the Greek word myelós, which means core.

At the time, it was believed that the myelin was at the core of the axon, however, it was later found to be a substance which wraps around the axons of neurons.


Myelin Sheath Functions

Myelin sheath’s primary function is to provide insulation to the axons of the neuron it surrounds. This insulation provides protection to these axons in the same way that electrical wires have insulation.

Myelin sheath is a low electrical condenser and has high electrical resistance which means it can act as an insulator without disrupting the electrical signals traveling down the axon.

Since myelin sheath provides insulation to axons, this allows these axons to conduct electrical signals at a higher speed than if they were not insulated by myelin. Thus, the more thoroughly myelinated an axon is, the higher the speed of electrical transmission.

One of the most myelinated axons, for instance, can conduct impulses at a speed of approximately 70 to 120 m/s, the speed of a race car. Similarly, myelin sheath around an axon is able to prevent electrical impulses from traveling through the sheath and out of the axon.

It prevents the movement of ions into or out of the neuron, also known as depolarization. This means the current of action potential will only flow down the axon. The more action potential, the more neurons will be able to communicate to each other, transfer electrical and chemical messages, and keep the brain healthy and functioning properly.

nodes of Ranvie

Whilst the myelin sheath wraps around the axons, there are some small, uncovered gaps between the myelin sheath, which are called the nodes of Ranvier. These are specialised molecular structures created by the myelin sheath which contains clusters of voltage-sensitive sodium and potassium ion channels.

As the electrical impulses cannot travel through the myelin sheath, it instead ‘jumps’ from one node of Ranvier to another in a type of conduction called saltatory conduction.

This type of conduction is important for electrical impulses to be formed quickly and means that less energy is required for the conduction of electrical signals. This is because less energy is needed in myelinated axons to conduct impulses.


How is Myelin Sheath Produced? – Myelination

Myelination is the formation of a myelin sheath, therefore axons which are covered by this insulating sleeve of protection are said to be myelinated axons. If an axon is not surrounded by myelin sheath, it is said to be unmyelinated.

The more myelinated axons someone has, the quicker their responses to stimuli will be, due to myelin sheaths increasing the conduction of nerve impulses. Consequently, unmyelinated axons will mean that an individual will not have quicker responses.

Likewise, in unmyelinated axons, the electrical signal will not be sped up by the nodes of Ranvier, meaning the signals will travel through each part of the cell, which in turn, slows down the speed of the signal’s conduction.

Myelin sheath is produced by different types of glia cells. Glia cells are located in the CNS and PNS, that work to maintain homeostasis, and provide support and protection for neurons.

The two types of glia cells that produce myelin are Schwann cells and oligodendrocytes. Schwann cells are located within the peripheral nervous system (PNS) whereas oligodendrocytes are located within the central nervous system (CNS).

Schwann cells

Schwann cells originate from the neural crest, which is a group of embryonic cells. As such, Schwann cells will first start to myelinate axons during foetal development. Schwann cells are surrounded by sheets of tissue known as basal lamina.

myelin sheath insulates axons

The outside of the basal lamina is covered in a layer of connective tissues known as the endoneurium. The endoneurium contains blood vessels, macrophages, and fibroblasts. Finally, the inner surface area of the lamina layer faces the plasma membrane of the Schwann cells.

For the myelin sheath to be created by Schwann cells in the PNS, the plasma membrane of these cells needs to wrap itself around the axons of the neuron concentrically, spiralling to add membrane layers.

This plasma membrane contains high levels of fat which is essential for the construction of myelin sheath. Sometimes, as many as 100 revolutions of Schwann cell spirals around the axons of the neurons.

Oligodendrocytes

Within the CNS, oligodendrocytes are the glia cells which also create myelin sheath. Oligodendrocytes are star-shaped cells which have about 15 arms coming out of their cell body, meaning it is able to myelinate multiple axons at one time.

Oligodendrocytes form the electrical insulation around the axons of CNS nerve cells.

In a similar fashion to Schwann cells, oligodendrocytes spiral around the axons of neurons to form a myelin sheath. The cell body and the nucleus of the oligodendrocytes, however, remain separate from the sheath and so do not wrap around the axon, unlike Schwann cells.

The oligodendrocytes repeatedly spiral around the axon to form a lipid-rich membrane, thus functioning similarly to Schwann cells. One oligodendrocyte can myelinate multiple axons at once in a coordinated process and simultaneously.

The onset of myelination is often triggered by neuronal activity in the CNS. This was proven in studies of rats, some of which were grown in the dark and some in the light.

It was found that the optic nerves of the rate who grew up in the dark had fewer developed myelinated axons than the optic nerves of those who did not grow up in the dark.

Overall, it has been found that the degree of myelination depends on the amount of neuronal activity, with increased neuronal activity increasing the amount of myelination.


Does Myelination Occur Throughout Life?

Myelination first occurs during embryonic development and is then a continuous process from birth, maturing at about 2 years of age. Once at this stage, motor and sensory systems are matured and cerebral myelination is mostly complete.

However, some processes are myelinated later in life, with some connections between the thalamus and prefrontal cortex maturing between the ages of 5 and 7 years of age.

Similarly, myelination of connections between association areas of the cerebral cortex continues into the 20s and 30s of individuals. Typically, myelination within the brainstem and cerebellum will mature first followed by maturation of myelination in the lobes of the cerebral cortex.

Most individuals between the ages of 20 and 29 years of age will be at their peak for their ability to perform physically due to myelination being matured in relevant areas.

However, myelination continues to develop throughout adulthood in regions responsible for integrating information for purposeful action such as in association areas, finally peaking at around 50 years of age.

Although there is continued myelination in association areas, the nervous system begins to decline in general from the age of 20, with the thinning of the cortex and the number of oligodendrocytes decreasing.


Clinical Aspects

Issues with myelination could be the result of damage, infections, trauma, genetic mutations, and autoimmune diseases. If myelin sheath on the axons is damaged or not able to be formed, this can result in electrical signals traveling down the axons to be slower or disrupted.

The myelin sheath is crucial for the normal operation of the neurons within the nervous system: the loss of the insulation it provides can be detrimental to normal function.

Ultimately, this could impair the myelination process and the functions of the Schwann cells and oligodendrocytes which could eventually lead to neurodegeneration. Depending on the extent of the issue and the condition experienced, an individual with myelination problems may be experiencing one or more of the following symptoms:

  • Numbness
  • Dizziness
  • Uncoordinated or clumsy movements
  • Loss of reflexes
  • Muscle weakness
  • Muscle spasms
  • Blurred vision or vision loss
  • Sensory changes or sensory loss
  • Pain
  • Muscle stiffness

The process of myelin being destroyed or not functioning properly is called demyelination. Diseases associated with demyelination can range from acute to chronic. A condition called Guillain-Barre Syndrome is a rare autoimmune disease that damages the healthy neurons of the PNS.

This can result in weakness, numbness, and may eventually cause paralysis, making it a life-threatening condition. As this condition causes damage to the axons of neurons, it can lead to electrical conduction being blocked.

demyelination Multiple sclerosis (MS)

Multiple sclerosis (MS) is another demyelinating condition which affects the myelin sheath. This is a disease which causes the immune system of individuals to attack the CNS, meaning the myelin sheath will be damaged.

MS can weaken muscles, damage coordination, and can cause paralysis in the worst conditions. With MS, the body’s immune system will treat myelin as a threat and will attack the myelin as well as the cells that make it. This condition therefore makes it difficult for electrical signals to be conducted through the neurons, resulting in compromised communication between neurons.

Finally, peripheral nerve tumors, such as Schwannomas are conditions that affect the Schwann cells that produce myelin sheath. A schwannoma is a tumor that is usually benign but in rare instances can be harmful and cancerous.

Although these are rarely harmful, they can result in nerve damage and a loss of motor control. As these tumors affect the cells which produce myelin sheath in the PNS, this can negatively affect how the axons conduct electrical impulses, resulting in symptoms such as muscle weakness, numbness, and some pain.

About the Author

Olivia Guy-Evans obtained her undergraduate degree in Educational Psychology at Edge Hill University in 2015. She then received her master’s degree in Psychology of Education from the University of Bristol in 2019. Olivia has been working as a support worker for adults with learning disabilities in Bristol for the last four years.

How to reference this article:

Guy-Evans, O. (2021, June 15). Myelin sheath . Simply Psychology. https://www.simplypsychology.org/myelin-sheath.html

APA Style References

Cech, D. J., & Martin, S. T. (2011). Functional Movement Development Across the Life Span-E-Book. Elsevier Health Sciences.

Moore, S., Meschkat, M., Ruhwedel, T., Trevisiol, A., Tzvetanova, I. D., Battefeld, A., Kusch, K., Kole, M. H. P., Strenzke, N., Möbius, W., de Hoz, L. & Nave, K. A. (2020). A role of oligodendrocytes in information processing. Nature communications, 11(1), 1-15.

Kirkwood, C. (2015, March 24). Myelin: An Overview. Brain Facts. https://www.brainfacts.org/brain-anatomy-and-function/anatomy/2015/myelin

Ratini, M. (2019, August 7). What Is a Myelin Sheath? WebMD. https://www.webmd.com/multiple-sclerosis/myelin-sheath-facts

Osika, A. (2020, October 29). The myelin sheath and myelination. Kenhub. https://www.kenhub.com/en/library/anatomy/the-myelin-sheath-and-myelination

Guy-Evans, O. (2021, Feb 15). Schwann cells. Simply Psychology. https://www.simplypsychology.org/schwann-cells.html

Home | About Us | Privacy Policy | Advertise | Contact Us

This workis licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Unported License.

Company Registration no: 10521846